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Abstract

The understanding of the relationship between an asset’s expected return and its

volatility is pivotal in asset pricing. In this paper, we extend the asymmetric double

exponential jump-diffusion model grounded in the affine generalized autoregressive

conditional heteroskedastic (GARCH) framework. We propose a model within the

affine GARCH setting that uses two exponential distributions to separately model

good and bad jumps. Furthermore, we deduce a closed-form solution for option

pricing within this model structure. Our results suggest that the integration of

jump components into the variance process significantly bolsters model estimation

performance—the bad jump component markedly outstrips its good counterpart in

contribution. In our empirical evaluation, we discern the variance risk premiums

attributable to these good and bad jumps through model estimation. A cross-

sectional regression reveals that both variance risk premiums serve as priced risk

factors. Moreover, a time-series examination underscores the prevailing role of the

bad jump variance risk premium in forecasting returns.
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1 Introduction

Understanding the interplay between financial market risk measures and expected market

returns is a critical endeavor in asset pricing. The literature abounds with evidence of

time-variant volatility and volatility clustering within market returns, phenomena that

introduce uncertainty into price risk and, consequently, give rise to risk premiums. A

recognized approach to effectively capture these dynamics is to include jump components

in market return models (Bates (1991); Christoffersen, Jacobs, and Ornthanalai (2012);

Christoffersen, Feunou, and Jeon (2015); Yang (2018); Chang et al. (2019)). Chang et

al. (2019) identify a divergence between realized volatility that incorporates a jump com-

ponent and its risk-neutral equivalent, coining this discrepancy the jump variance risk

premium (JVRP). Notably, this premium has been observed to be both negative and

variable over time. In financial markets, good jumps typically stem from investor opti-

mism about overall economic prospects, while bad jumps are usually the result of market

trepidation (Kilic and Shaliastovich (2019)). However, individual investor sentiments

regarding market conditions are not homogenous. Consequently, an increasing body of

research has highlighted the significance of differentiating between upward and downward

market volatilities (Feunou, Jahan-Parvar, and Tédongap (2013); Bekaert, Engstrom, and

Ermolov (2015); Kilic and Shaliastovich (2019)). Thus, distinguishing between good and

bad jumps is anticipated to be crucial within the JVRP framework.

In this study, we demonstrate the importance of both good and bad jump innovations.

We use an option pricing framework to examine the roles played by these jumps in the

variance risk premium (VRP). Therefore, option valuation requires a robust pricing for-

mula. From asset returns and variance dynamic processes to the kernel’s pricing design,

each phase informs the option valuation paradigm. Additionally, our estimations provide

insights into the VRP’s associations with good and bad jumps, aiding our exploration of

their respective pricing and return predictability on a cross-sectional basis. Concerning

model selection, we first analyze a real-time return series. The top panel of Figure 1

displays the time series of S&P 500 index returns from 1996 to 2020. Without loss of

generality, we define returns exceeding the mean return plus three times the standard

deviation as good jumps (middle panel of Figure 1) and returns falling below the mean

return minus three times the standard deviation as bad jumps (bottom panel of Figure

1). Observing the middle and bottom panels of Figure 1, we note that when a good

(bad) jump occurs, the likelihood of a subsequent good (bad) jump increases, indicating

that both good jump volatility and bad jump volatility exhibit time-varying and clus-

tering properties; hence, incorporating both good and bad jumps in models is critical.

Consequently, our approach aligns with the generalized autoregressive conditional het-

eroskedastic (GARCH) option pricing framework proposed by Heston and Nandi (2000).

The GARCH framework accurately characterizes both time-varying and clustering dy-
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Figure 1: Daily return, good jumps, and bad jumps on the S&P 500 index
Note: The sample period is from January 1996 to December 2020. The upper figure presents daily
S&P500 index returns. Without loss of generality, in the middle figure, a good jump is defined as a
return that exceeds the average return plus thrice the standard deviation, whereas in the bottom figure,
a bad jump is defined as a return less than the mean return minus three times the standard deviation.

namics. Furthermore, compared to stochastic volatility model, the GARCH framework

facilitates model estimation and interpretation (Christoffersen, Jacobs, and Ornthanalai

(2012)). Therefore, a plethora of option valuation literature conducts in-depth studies

within the context of the GARCH model (Kanniainen, Lin, and Yang (2014); Oh and

Park (2023)).

In the proposed modeling framework, the asset return process builds upon the struc-

ture delineated by Yang (2018), incorporating innovations that manifest as normal, good

jumps, and bad jumps. Yang (2018) amalgamates both normal and jump innovations,

with the jump innovations depicted using the asymmetric exponential jump-diffusion

framework known as the Kou model. This model proficiently addresses the limitations of

presuming jump innovations to align with a normal distribution (Kou (2002); Kou and

Wang (2004)). To account for varied investor sentiments toward asset returns, we seg-

ment the Kou model into two distinct exponential distributions, individually capturing

good and bad jump innovations. This refined structure not only accommodates the spec-

trum of investor sentiments but also elucidates the distinct roles of good and bad jumps
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within the risk premium spectrum. In the variance dynamic, alongside the heterogeneity

of the standard component, we delineate the intensities associated with both good and

bad jumps. In contrast to Ornthanalai (2014), who omits the influence of jumps on the

heterogeneity of the normal component and jump intensities, ample literature emphasizes

the significance of embedding jump dynamics within volatility for precise option valua-

tion (Eraker (2004); Christoffersen, Jacobs, and Ornthanalai (2012); Yang (2018); Chang

et al. (2019)). Hence, our model is designed to simultaneously capture the influences of

both types of jumps on the normal component’s heterogeneity and their specific inten-

sities. Our pricing kernel integrates four state variables: market returns, good jumps,

bad jumps, and continuous variance dynamics. Adhering to Christoffersen, Heston, and

Jacobs (2013), when continuous variance dynamics are embedded, our kernel design in-

triguingly mirrors a non-linear U-shaped projection on market returns. Moreover, our

model facilitates an asymmetrical impact of the risk premiums from good and bad jumps

on the pricing kernel, ensuring a robust bridge in measure transformation during option

valuation. Drawing from the insights of Heston and Nandi (2000), we derive a closed-form

option pricing solution within a model structure that entails normal, good, and bad jump

innovations.

We estimate our model’s parameters by employing a joint maximum likelihood esti-

mation (joint MLE) method coupled with data from the S&P 500 Index and its options

spanning 1996 to 2020. Joint MLE, where index returns and options can be jointly con-

sidered, has the advantage of being resilient against overfitting. We aspire to determine

the specific repercussions of good and bad jumps within the variance process. Four model

scenarios are considered: one devoid of any jumps, one with only good jumps, one with

only bad jumps, and one with both good and bad jumps. Observations suggest that the

model with no jumps is the least effective, consistent with results in previous studies.

Interestingly, the model with only bad jumps outperforms that with only good jumps.

This reinforces the general perception that decreases in asset returns during bad jumps

are greater in magnitude than increases in asset returns during good jumps. It under-

scores the potency of including bad jumps to preemptively gauge impending variance

shifts. Furthermore, our findings reveal that risk premiums stemming from normal and

bad jump innovations are positive, denoting appropriate compensatory premiums for in-

vestors bearing these risks. Conversely, the risk premium linked to good jump innovations

is negative, suggesting that investors might bear a marginal cost to capitalize on the up-

side potential of asset returns; this is consistent with the logic of investors shouldering

costs for hedging tools.

In our empirical analysis, we commence by employing cross-sectional regression to as-

certain the pricing of the continuous variance risk premium (CVRP), good jump variance

risk premium (GJVRP), and bad jump variance risk premium (BJVRP) in relation to

expected stock returns. In doing so, we utilize not only the Fama-MacBeth regression
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approach but also the three-pass regression technique, as introduced by Giglio and Xiu

(2021), to evaluate the risk premiums attributable to each of these factors. Considering

the susceptibility of regression models to overlook critical explanatory variables, such

oversights can lead to biases in estimating risk premiums. To address this, Giglio and

Xiu (2021) improve upon the traditional two-stage regression approach, which resembles

the Fama-MacBeth methodology, by devising a three-pass regression specifically tailored

to reduce estimation errors caused by omitted variables. Our preliminary results indicate

that the risk premiums for all types of VRP under investigation are statistically signifi-

cant, suggesting that these VRPs serve as priceable risk factors. The risk premium for

the BJVRP emerges as the most substantial, displaying a magnitude comparable to that

of the aggregate JVRP. This finding further elucidates the cross-sectional results docu-

mented by Chang et al. (2019), which highlighted that the risk premium associated with

the JVRP is primarily driven by the BJVRP. This evidence accentuates the BJVRP’s

effectiveness in reflecting investor anticipation of unfavorable market conditions and sug-

gests that such prevalent bearish sentiments contribute to the heightened expected stock

returns that are associated with the BJVRP.

Subsequently, we explore the potential of the CVRP, GJVRP, and BJVRP to forecast

market returns. While numerous academic contributions have validated the efficacy of the

VRP in prognosticating subsequent market returns (Bakshi and Kapadia (2003); Boller-

slev, Tauchen, and Zhou (2009); Byun et al. (2015); Li and Zinna (2018)), Chang et al.

(2019) have broadened this narrative by revealing that the predictive power of the VRP

is overwhelmingly influenced by the JVRP. Their investigations predominantly centered

around forecasting market yields spanning horizons of 6 months up to a year. Seeking

more comprehensive insights, we expand the prediction window, ranging from a concise

one-month interval to an extensive 24-month period. Consistent with extant literature,

our preliminary data indicates that the VRP presents a discernibly negative coefficient

when forecasting market yields exceeding a six-month horizon, primarily attributable to

the JVRP’s influence. Concurrently, the CVRP’s impact on predicting market returns

emerges as statistically insignificant, resonating with Chang et al. (2019)’s conclusions. A

deeper analysis unveils that the JVRP’s significance is largely propelled by the BJVRP,

with a diminished BJVRP correlating with augmented prospective market yields. Con-

versely, the GJVRP’s prowess in forecasting market yields appears to be inconsequential.

Overall, our study makes a significant contribution to the literature on option pricing

and the empirical asset pricing involving VRPs. We employ a GARCH option pricing

model, considering both good jump and bad jump innovations within asset returns. Ad-

ditionally, our model permits both good and bad jump innovations to simultaneously

influence the subsequent period’s variance. This methodological innovation ameliorates

limitations found in previous literature. Firstly, traditional jump innovations assume

that jump size follows a normal distribution, rendering them incapable of adequately
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capturing the asymmetry between good and bad jumps (Kou, Yu, and Zhong (2017)).

Secondly, while Yang (2018) adeptly applies the asymmetric exponential jump-diffusion

model to GARCH option pricing, our contribution extends Yang (2018)’s model. We

further decompose the jump component into good jump and bad jump innovations. This

presupposes that different investors have varying perspectives on asset returns, and it

also facilitates our subsequent examination of the empirical performance of GJVRP ver-

sus BJVRP. In conclusion, across both cross-sectional and time-series analyses, our study

further illuminates that the BJVRP is the pivotal risk factor driving the overall JVRP.

The remainder of this paper is structured as follows: Section 2 discusses GARCH

asset dynamics incorporating normal, good jump, and bad jump innovations and elab-

orates on the derivation of the risk-neutral process and the closed-form option pricing

formula. Section 3 describes the estimation methods and provides a comparative analysis

of model performance. Section 4 examines the predictive power of the estimated GJVRPs

and BJVRPs for stock market returns, both in cross-sectional and time-series contexts.

Section 5 concludes the paper.

2 GARCH model with good and bad jump dynamics

2.1 The asset return process and variance dynamic process

To consider the effect of good and bad jumps on asset returns, we extend the general

return process by splitting the jump component into two exponential distributions, rep-

resenting good and bad jump innovations, respectively. The asset return process under

the physical measure is specified as follows

Rt ≡ log

(
St

St−1

)
= rt + (λz − ξz(1))hz,t + (λg − ξg(1))hg,t + (λb − ξb(−1))hb,t + zt + yg,t − yb,t,

(1)

where St is the asset price at time t, Rt is the log-return, and rt is the risk-free rate. The

normal component zt follows a normal distribution with heterogeneous variances and is

defined as

zt ∼ N (0, hz,t) .
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The good jump innovation yg,t and bad jump innovation yb,t follow a compound Poisson

process can be written as

yg,t =

ng,t∑
j=0

xjg,t ∼ CPJ (hg,t, µg) ,

yb,t =

nb,t∑
j=0

xjb,t ∼ CPJ (hb,t, µb) ,

where xjg,t and xjb,t follow exponential distributions with jump size µg and µb, respec-

tively, whereas ng,t and nb,t denote Poisson distributions with jump intensity hg,t and

hb,t, respectively. λz, λg, and λt are the market prices of risks of the normal, good

jump, and bad jump innovations, respectively. ξz(t) = t2/2, ξg(t) = µg/(µg − t)− 1 and

ξb(t) = µb/(µb − t) − 1. Finally, ξz(1)hz,t, ξg(1)hg,t, and ξb(−1)hb,t denote the convexity

adjusted terms. The conditional expectation of asset price is

EP
t−1

[
St

St−1

]
= ert+λzhz,t+λghg,t+λbhb,t . (2)

We define λzhz,t + λghg,t + λbhb,t as the conditional equity premium. For investors, risks

arising from the normal component and bad jump innovations are undesirable, leading

to their respective risk premiums being positive, that is, λz > 0 and λb > 0. By contrast,

risks stemming from good jump innovation are favored by investors because these jumps

have a positive impact on returns. As a result, investors are willing to incur some costs

to hold onto assets with good jump innovation, akin to holding hedging instruments.

Therefore, the risk premium for good jump innovation is negative despite λg < 0.

The dynamics of variance for the normal component, good jump intensity, and bad

jump intensity are an extended affine GARCH dynamic with good and bad jump inno-

vations given by

hz,t = wz + bzhz,t−1 +
az

hz,t−1

(zt−1 − czhz,t−1)
2 + dzyg,t−1 + ezyb,t−1, (3)

hg,t = wg + bghg,t−1 +
ag

hz,t−1

(zt−1 − cghz,t−1)
2 + dgyg,t−1 + egyb,t−1, (4)

hb,t = wb + bbhb,t−1 +
ab

hz,t−1

(zt−1 − cbhz,t−1)
2 + dbyg,t−1 + ebyb,t−1, (5)

with initial conditions hz,0, hg,0, and hb,0. This formulation aptly encapsulates the asym-

metry and clustering characteristics of normal variance, good jump intensity, and bad

jump intensity. Moreover, it permits the influences of both good and bad jump innova-
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tions on normal variance, good jump intensity, and bad jump intensity to be concurrently

considered.

2.2 Conditional higher moments of return process

Through the moment generating functions of the normal distribution and the compound

Poisson process, we can derive the conditional higher-order moments under Equation (1):

V art−1(Rt) = hz,t +
2

µ2
g

hg,t +
2

µ2
b

hb,t, (6)

Skewt−1(Rt) =
6/µ3

ghg,t − 6/µ3
bhb,t

(hz,t + 2/µ2
ghg,t + 2/µ2

bhb,t)
3/2
, (7)

Kurtt−1(Rt) =
24/µ4

ghg,t + 24/µ4
bhb,t

(hz,t + 2/µ2
ghg,t + 2/µ2

bhb,t)
2
, (8)

where Skewt−1(Rt) denotes the conditional skewness of the return process andKurtt−1(Rt)

represents the conditional kurtosis of the return process. The direction of the conditional

skewness depends on the difference between the good jump intensity paired with the good

jump size and the bad jump intensity paired with the bad jump size. Through our model,

we can obtain time-varying conditional skewness and conditional kurtosis. Harvey and

Siddique (2000) have already substantiated that time-varying conditional skewness is a

crucial concept in the asset pricing domain.

2.3 The pricing kernel

Because the projection of the pricing kernel on stock returns is nonmonotonic (Christof-

fersen, Heston, and Jacobs (2013)), we assume a variance-dependent pricing kernel with

good jumps and bad jumps innovations given by

log

(
Mt

Mt−1

)
= δt − γRt + γGyg,t − γByb,t + γV Z(hz,t+1 − hz,t), (9)

where Rt represents the logarithmic asset return and yg,t and yb,t indicate the good jump

innovation and the bad jump innovation, respectively. hz,t+1−hz,t is the variance premium

of the stochastic continuous component. The adjustment coefficient δt is used to ensure

that EP
t−1[Mt/Mt−1] is equal to the risk-free interest rate.

This pricing kernel not only accounts for the VRP of asset returns and the stochastic

continuous component but also considers the impact of good jumps and bad jumps on

pricing. For investors, the inherent risk associated with holding assets demands a corre-
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sponding risk compensation. Thus, both the equity premium and the bad jump premium

are positive. Given that the marginal utility is a diminishing function of asset returns, the

signs preceding the equity premium, denoted as γ, and the bad jump premium, denoted

as γB, are negative (−). By contrast, because good jumps always have a positive relation-

ship with returns, investors are inclined to incur additional costs to leverage the benefits

of such positive jumps; this phenomenon is similar to hedging. Consequently, both the

good jump premium and variance premium are negative. Therefore, the signs preceding

the good jump premium γG and the variance premium γV Z are positive (+). This pricing

kernel is more general than those in the literature. When γG = γB = γV Z = 0, the pricing

kernel degenerates into a power utility pricing kernel. When γG = γB = 0, the pricing

kernel degenerates into the pricing kernel designed by Christoffersen, Heston, and Jacobs

(2013).

2.4 The risk-neutral measure and option valuation

With the pricing kernel in Equation (9), we can obtain the corresponding Radon–Nikodým

derivative function as

dQt/dPt

dQt−1/dPt−1

=
exp (−ΛZzt + ΛV Z(z

2
t /hz,t)− ΛGyg,t − ΛByb,t)

EP
t−1 [exp (−ΛZzt + ΛV Z(z2t /hz,t)− ΛGyg,t − ΛByb,t)]

, (10)

where ΛZ = γ+2azczγV Z , ΛV Z = azγV Z , ΛG = γ−γG−dzγV Z , and ΛB = −γ+γB−ezγV Z

are equivalent martingale measure coefficients.

Lemma 1 We can derive the closed-form of the Radon-Nikodým derivative where

EP
t−1

[
exp

(
−ΛZzt + ΛV Z(z

2
t /hz,t)− ΛGyg,t − ΛByb,t

)]
= exp

(
− log(ϕ)

2
+

Λ2
Z

2ϕ
hz,t +

(
µg

µg + ΛG

− 1

)
hg,t +

(
µb

µb + ΛB

− 1

)
hb,t

)
,

(11)

where ϕ = 1− 2ΛV Z.

Proof. See Appendix A.

Proposition 1 If the asset return process under the physical probability measure is rep-

resented by Equation (1), then the risk-neutral probability measure (Q), as characterized

by the Radon–Nikodým derivative in Equation (10), constitutes an equivalent martingale

measure if, and only if

λz −
1

2
+

1− 2ΛZ

2(1− 2ΛZ)
= 0, (12)

λg −
(

µg

µg − 1
− 1

)
−
(

µg

µg + ΛG

− 1

)
+

(
µg

µg + (ΛG − 1)
− 1

)
= 0, (13)
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and

λb −
(

µb

µb + 1
− 1

)
−
(

µb

µb + ΛB

− 1

)
+

(
µb

µb + (ΛB + 1)
− 1

)
= 0. (14)

Proof. See Appendix B.

Given the Radon–Nikodým derivative in Equation (10) and Proposition 1, we then

derive the asset return process and variance process under the Q-measure.

Proposition 2 The asset return dynamic in Equation (1) and variance dynamics in

Equation (3) - (5) under Q-measure can be written as

Rt = log

(
St

St−1

)
= rt − ξ∗z (1)h∗z,t − ξ∗g(1)h∗g,t − ξ∗b (−1)h∗b,t + z∗t + y∗g,t − y∗b,t, (15)

h∗z,t = w∗
z + bzh

∗
z,t−1 +

a∗z
h∗z,t−1

(
z∗t−1 − c∗zh∗z,t−1

)2
+ d∗zy

∗
g,t−1 + e∗zy

∗
b,t−1, (16)

h∗g,t = w∗
g + bgh

∗
g,t−1 +

a∗g
h∗z,t−1

(
z∗t−1 − c∗gh∗z,t−1

)2
+ d∗gy

∗
g,t−1 + e∗gy

∗
b,t−1, (17)

h∗b,t = w∗
b + bbh

∗
b,t−1 +

a∗b
h∗z,t−1

(
z∗t−1 − c∗bh∗z,t−1

)2
+ d∗by

∗
g,t−1 + e∗by

∗
b,t−1, (18)

where z∗t ∼ N(0, h∗z,t), is the risk-neutral normal innovation y∗g,t ∼ CPJ
(
h∗g,t, µ

∗
g

)
is

the risk-neutral good jump innovation, y∗b,t ∼ CPJ
(
h∗b,t, µ

∗
b

)
is the risk-neutral bad jump

innovation, h∗z,t = hz,t/ϕ, h
∗
g,t = hg,tΠg, h

∗
b,t = hb,tΠb, µ

∗
g = µg + ΛG, µ

∗
b = µb + ΛB,

ξ∗z (t) = t2/2, ξ∗g(t) = µ∗
g/(µ

∗
g − t) − 1, ξ∗b (t) = µ∗

b/(µ
∗
b − t) − 1, w∗

z = wz/ϕ, a
∗
z = az/ϕ

2,

c∗z = czϕ+ΛZ, d
∗
z = dz/ϕ, e

∗
z = ez/ϕ, w

∗
g = wgΠg, a

∗
g = agΠg/ϕ, c

∗
g = cgϕ+ΛZ, d

∗
g = dgΠg,

e∗g = egΠg, w
∗
b = wbΠb, a

∗
b = abΠb/ϕ, c

∗
b = cbϕ + ΛZ, d

∗
b = dbΠb, e

∗
b = ebΠb, Πg = µg/µ

∗
g,

and Πb = µb/µ
∗
b .

Proof. See Appendix C.

To derive an option pricing model, we deduce the moment generating function of the

asset return dynamics under the Q-measure based on the results from Proposition 2.

Proposition 3 First, we consider the moment generating function of the multiperiod

aggregate return as follows:

fQ(ψ; t, T ) ≡ EQ
t

[
exp

(
ψ

T−t∑
j=1

Rt+j

)]

= exp
(
A(ψ; t, T ) +B(ψ; t, T )h∗z,t+1 + C(ψ; t, T )h∗g,t+1 +D(ψ; t, T )h∗b,t+1

)
,

(19)
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where T denotes the terminal date,

A(ψ; t, T ) = ψrt+1 + A(ψ; t+ 1, T ) +B(ψ; t+ 1, T )w∗
z + C(ψ; t+ 1, T )w∗

g +D(ψ; t+ 1, T )w∗
b

− 1

2
log
(
1− 2B(ψ; t+ 1, T )a∗z − 2C(ψ; t+ 1, T )a∗g − 2D(ψ; t+ 1, T )a∗b

)
,

B(ψ; t, T ) = −ψ
2
+B(ψ; t+ 1, T )(bz + a∗zc

∗2
z ) + C(ψ; t+ 1, T )a∗gc

∗2
g ++D(ψ; t+ 1, T )a∗bc

∗2
b

+
(ψ − 2B(ψ; t+ 1, T )a∗zc

∗
z − 2C(ψ; t+ 1, T )a∗gc

∗
g − 2D(ψ; t+ 1, T )a∗bc

∗
b)

2

2(1− 2B(ψ; t+ 1, T )a∗z − 2C(ψ; t+ 1, T )a∗g − 2D(ψ; t+ 1, T )a∗b)
,

C(ψ; t, T ) = C(ψ; t+ 1, T )bg − ψξ∗g(1) + ξ∗g(ψ +B(ψ; t+ 1, T )d∗z + C(ψ; t+ 1, T )d∗g

+D(ψ; t+ 1, T )d∗b),

D(ψ; t, T ) = D(ψ; t+ 1, T )bb − ψξ∗b (−1) + ξ∗b (−ψ +B(ψ; t+ 1, T )e∗z + C(ψ; t+ 1, T )e∗g

+D(ψ; t+ 1, T )e∗b),

with terminal conditions A(ψ;T, T ) = B(ψ;T, T ) = C(ψ;T, T ) = D(ψ;T, T ) = 0. Fi-

nally, using the inverse Fourier transformation method employed by Heston and Nandi

(2000) to transform the moment generating function, the closed-form solution for Euro-

pean call option value can be priced as follows

C
(
St, K, T, h

Q
z,t+1, h

Q
g,t+1, h

Q
b,t+1

)
= StP1,t −Kexp [−rt(T − t)]P2,t, (20)

where

P1,t =
1

2
+

1

π
exp [−rt(T − t)]

∫ ∞

0

Re

[
K−iϕfQ(ϕ+ 1, t, T )

iϕSt

]
,

P2,t =
1

2
+

1

π

∫ ∞

0

Re

[
K−iϕfQ(ϕ, t, T )

iϕ

]
,

C denotes the option value function, St represents the asset price, K is the strike price

of the option contract, T denotes the expiration date of the contract, Re[·] represents the
real part of a complex number, and rt is the risk-free rate.

Proof. See Appendix D.

2.5 Good and bad jump variance risk premium

To calculate the BJVRP and GJVRP, we refer to the decomposition process proposed by

Chang et al. (2019) and decompose the quadratic variation (QV) of asset returns into a

10



real measure and risk-neutral measure as follows

QV P
t,t+1 = CV P

t,t+1 +GJV P
t,t+1 +BJV P

t,t+1, (21)

QV Q
t,t+1 = CV Q

t,t+1 +GJV Q
t,t+1 +BJV Q

t,t+1, (22)

where CV P
t,t+1 = EP

t [z
2
t+1] = hz,t+1 and CV Q

t,t+1 = EQ
t [z

∗2
t+1] = h∗z,t+1. The mathematical

expressions for GJV P
t,t+1, GJV

Q
t,t+1, BJV

P
t,t+1, BJV

Q
t,t+1 are as follows

GJV P
t,t+1 = EP

t

[
ng,t+1∑
j=0

(xjg,t+1)
2

]
− EP

t

[
ng,t+1∑
j=0

xjg,t+1

]2
=

2

µ2
g

hg,t+1, (23)

GJV Q
t,t+1 = EQ

t

[
ng,t+1∑
j=0

(x∗jg,t+1)
2

]
− EQ

t

[
ng,t+1∑
j=0

x∗jg,t+1

]2
=

2

µ∗2
g

h∗g,t+1, (24)

BJV P
t,t+1 = EP

t

[
nb,t+1∑
j=0

(xjb,t+1)
2

]
− EP

t

[
nb,t+1∑
j=0

xjb,t+1

]2
=

2

µ2
b

hb,t+1, (25)

BJV Q
t,t+1 = EQ

t

[
nb,t+1∑
j=0

(x∗jb,t+1)
2

]
− EQ

t

[
nb,t+1∑
j=0

x∗jb,t+1

]2
=

2

µ∗2
b

h∗b,t+1. (26)

The VRP can be characterized as the discrepancy between the QV under the real measure

and that under the risk-neutral measure as follows:

V RPt,t+1 = EP
t

[
QV P

t,t+1

]
− EQ

t

[
QV Q

t,t+1

]
. (27)

Using Equations (3.21)-(3.24), we can decompose V RP into

V RPt,t+1 = EP
t

[
CV P

t,t+1 +GJV P
t,t+1 +BJV P

t,t+1

]
− EQ

t

[
CV Q

t,t+1 +GJV Q
t,t+1 +BJV Q

t,t+1

]
=
(
EP

t [CV
P
t,t+1]− E

Q
t [CV

Q
t,t+1]

)
+
(
EP

t [GJV
P
t,t+1]− E

Q
t [GJV

Q
t,t+1]

)
+(

EP
t [BJV

P
t,t+1]− E

Q
t [BJV

Q
t,t+1]

)
= CV RPt,t+1 +GJV RPt,t+1 +BJV RPt,t+1.

(28)

If the JVRP is assumed to be the sum of the GJVRP and BJVRP, Equation (28) becomes

Equation (32) in Chang et al. (2019). We then aim to decompose the total VRP into the
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CVRP, GJVRP, and BJVRP. Therefore, the BJVRP and GJVRP are given by

GJV RPt,t+1 = EP
t [GJV

P
t,t+1]− E

Q
t [GJV

Q
t,t+1] =

2

µ2
g

hg,t+1 −
2

µ∗2
g

h∗g,t+1, (29)

BJV RPt,t+1 = EP
t [BJV

P
t,t+1]− E

Q
t [BJV

Q
t,t+1] =

2

µ2
b

hb,t+1 −
2

µ∗2
b

h∗b,t+1. (30)

3 Data and model estimation

3.1 Data

Data on index returns are obtained from the Center for Research in Security Prices

(CRSP), while the daily time series of three-month Treasury bills serve as the proxy for

the risk-free rate. Option quotes for S&P 500 index puts and calls are sourced from

OptionMetrics, encompassing the timeframe from January 1996 through December 2020.

In filtering option data to ensure a focus on highly liquid out-of-the-money options, we

adhere to the methodology outlined by Bégin, Dorion, and Gauthier (2020)1. Descriptive

statistics for the option data, segmented by moneyness and maturity, are presented in

Table 1.

3.2 Model estimation

3.2.1 Joint MLE

The joint MLE is crucial to the research of this paper, which means using both asset

return and option data to estimate parameters simultaneously. In fact, the precision of

estimating the risk premium parameters using only asset return data is relatively poor,

but these parameters play a role as a bridge between true measure and risk-neutral

measure in pricing kernels (Chernov and Ghysels (2000), Eraker (2004), Christoffersen,

Jacobs, and Ornthanalai (2012), Ornthanalai (2014)). Merton (1976) mentions that, in

the absence of jumps, deep out-of-the-money option data have little value due to the short

maturity of options. This implies that when jumps occur, these deep out-of-the-money

options can improve the ability to estimate jump probabilities. Therefore, the richness of

option data can help investors extract the characteristics of risk premium more accurately.

We adopt the parameter estimation method proposed by Christoffersen, Jacobs, and

Ornthanalai (2012), Ornthanalai (2014), and Chang et al. (2019), which employ the

maximum weighted joint log-likelihood function, expressed as follows:

1Our option data filtering process is based on the steps outlined by Bégin, Dorion, and Gauthier
(2020) in the online appendix under the section ’OA.F More on the Dataset’.

12



Table 1: Description of the S&P500 index and option data
Note: Table 1 presents summary statistics for the daily returns of the S&P 500 index and the corre-
sponding option prices. Panel A provides return statistics for the S&P 500 index. Panels B through
D offer summary statistics for the volume of option contracts, their prices, and the implied volatility,
organized by moneyness (K/S) and days-to-maturity (M), where S denotes the index level and K is
the strike price. The scope of our analysis is limited to out-of-the-money European put and call options
on the S&P 500 index. The index data and option data are procured from CRSP and OptionMetrics,
respectively. Recorded every Wednesday, option prices from actively traded options are included, with
put prices being converted to call prices in accordance with put-call parity. Implied volatilities are deter-
mined using the Black-Scholes model. To filter out illiquid options, we follow the procedure described by
Bégin, Dorion, and Gauthier (2020). The period of our data sample extends from January 1996 through
December 2020.

Panel A: S&P500 index returns

N Minimum 25% 50% 75% Maximum Mean SD
6,295 -5.54% -0.21% 0.03% 0.26% 4.76% 0.01% 0.53%

Panel B: Number of option contracts.

M ≤ 30 30 < M ≤ 90 90 < M ≤ 180 180 < M ≤ 250 M >250 All
0.80 < K/S ≤ 0.85 3,241 4,249 2,681 1,107 1,216 12,494
0.85 < K/S ≤ 0.90 3,912 4,619 2,869 1,191 1,437 14,028
0.90 < K/S ≤ 0.95 4,195 4,791 2,980 1,293 1,576 14,835
0.95 < K/S ≤ 1.00 4,146 4,801 3,006 1,332 1,738 15,023
1.00 < K/S ≤ 1.05 4,148 4,701 2,708 978 1,242 13,777
1.05 < K/S ≤ 1.10 3,169 4,620 2,809 1,027 1,243 12,868
1.10 < K/S ≤ 1.15 976 2,420 2,169 989 1,100 7,654
1.15 < K/S ≤ 1.20 269 820 1,062 733 912 3,796
All 24,056 31,021 20,284 8,650 10,464 94,475

Panel C: Average option prices.

M ≤ 30 30 < M ≤ 90 90 < M ≤ 180 180 < M ≤ 250 M >250 All
0.80 < K/S ≤ 0.85 1.55 5.28 17.85 31.30 43.22 13.01
0.85 < K/S ≤ 0.90 2.67 9.09 27.29 42.57 57.12 18.78
0.90 < K/S ≤ 0.95 5.89 16.57 41.47 57.74 74.51 28.29
0.95 < K/S ≤ 1.00 16.63 33.58 66.47 84.55 102.72 48.00
1.00 < K/S ≤ 1.05 12.94 25.21 55.25 78.21 99.49 37.88
1.05 < K/S ≤ 1.10 2.18 6.63 21.00 38.61 54.38 15.84
1.10 < K/S ≤ 1.15 1.41 3.26 9.87 18.78 29.26 10.64
1.15 < K/S ≤ 1.20 1.29 2.81 7.06 10.55 15.91 8.53
All 7.13 14.97 33.87 47.98 63.88 25.47

Panel D: Average implied volatility.

M ≤ 30 30 < M ≤ 90 90 < M ≤ 180 180 < M ≤ 250 M >250 All
0.80 < K/S ≤ 0.85 0.3905 0.2995 0.2692 0.2600 0.2491 0.3082
0.85 < K/S ≤ 0.90 0.3130 0.2580 0.2426 0.2372 0.2294 0.2655
0.90 < K/S ≤ 0.95 0.2399 0.2207 0.2175 0.2182 0.2132 0.2245
0.95 < K/S ≤ 1.00 0.1799 0.1847 0.1914 0.1979 0.1960 0.1872
1.00 < K/S ≤ 1.05 0.1361 0.1506 0.1651 0.1761 0.1808 0.1536
1.05 < K/S ≤ 1.10 0.1543 0.1382 0.1455 0.1593 0.1615 0.1477
1.10 < K/S ≤ 1.15 0.2202 0.1650 0.1473 0.1509 0.1517 0.1633
1.15 < K/S ≤ 1.20 0.2972 0.2083 0.1696 0.1523 0.1468 0.1782
All 0.2324 0.2039 0.1970 0.1980 0.1945 0.2081
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max
Θ

[
T +N

2

(
Lreturn(Θ)

T
+
Loption(Θ)

N

)]
, (31)

where T is the number of asset returns, N is the number of option data, Θ is the model

parameter set, and Lreturn and Loption are the log-likelihood functions of asset returns and

option data, respectively. Obtaining Lreturn is more complicated; thus, we first introduce

the calculation of Loption.

Before the Loption is calculated, the option pricing error must be estimated. To fa-

cilitate this calculation, many studies use vega-weighted pricing errors as proposed by

Carr and Wu (2007), Trolle and Schwartz (2009), and Chang et al. (2019). These can be

expressed as follows:

ek =
CMODEL

k − CMKT
k

V MKT
k

, (32)

where the kth option CMODEL
k represents the option value calculated with the model,

CMKT
k represents the market value, and V MKT

k represents the Black–Scholes vega value.

If pricing errors are assumed to be normally distributed (ek ∼ N(0, σ2
e)), then Loption can

be expressed as

Loption(Θ) = −1

2

N∑
k=1

(
log(2πσ2

e) +
e2k
σ2
e

)
, (33)

where σe is the sample standard deviation estimation of {ek}Nk=1.

3.2.2 Particle filter algorithm

For the derivation of Lreturn, in traditional GARCH processes, the noise term can be

determined by examining both the return and the initial variance. However, with the

introduction of jump factors, distinguishing the proportion of the noise term originating

from the stochastic continuous term versus that from the jump term based solely on

the return and the initial variance is challenging (Durham, Geweke, and Ghosh (2015)).

Thus, even if the returns at time point t are observable, ascertaining the values of hz,t,

hg,t, and hb,t is unfeasible due to the indeterminacy of the values of zt, yg,t, and yb,t

respectively. Therefore, we use the particle filter algorithm to obtain zt, yg,t, and yb,t at

time t. This, in turn, allows us to compute Lreturn. Previous studies have typically used

only two latent variables, namely normal and jump innovations. By contrast, our model

for asset return dynamics has three latent variables, specifically normal, good jump, and

bad jump innovations. To handle three latent variables in the likelihood function, we

use an extension of the novel particle filtering approach called the sequential importance

resampling filtering method, which was introduced by Bégin, Dorion, and Gauthier (2020)
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Appendix E details the particle filter algorithm.

3.2.3 Model performance

Given that our model allows for the simultaneous inclusion of both good jump and bad

jump innovations, we seek to investigate the performance implications of incorporating

different jump components into the variance process. We consider four nested models.

Model 1 (GARCH with no jump) is based on the affine GARCH framework. This means

that neither good jump nor bad jump innovations can influence the variance of the normal

term, good jump intensity, or bad jump intensity in the subsequent period (dz = dg =

dg = ez = eg = ed = 0). In the model, only the residuals stemming from the normal

distribution exert influence. Model 2 (GARCH with good jump) is an extension of Model

1; specifically, model 2 includes the effect of good jump innovation (ez = eg = ed = 0).

Model 3 (GARCH with bad jump) is also an extension of Model 1; specifically, model

3 incorporates only the influence of bad jump innovation (dz = dg = dg = 0). Model 4

(GARCH with good and bad jumps) is the most comprehensive configuration; specifically,

both good jump and bad jump innovations are included in the variance process. The

performance of these models is primarily evaluated in terms of the weighted likelihood

and the root mean square error (RMSE) metric, which is defined as follows

RMSE =

√√√√ 1

N

N∑
k=1

(CMODEL
k − CMKT

k )2. (34)

Table 2 displays the outcomes of our model estimations. Model 4 has the best per-

formance, followed by Model 3, Model 2, and Model 1. These results reveal the value

of incorporating jump components into the variance process, and bad jumps are more

influential than good ones. This observation is consonant with the phenomenon where

decreases in asset returns during bad jumps tend to be greater than increases in asset

returns during good jumps. This also suggests that incorporating a bad jump component

within the variance process more effectively captures the changes in the variance for the

subsequent period. Finally, we examined the proportion of variance attributable to each

risk factor relative to the total variance. Consistent with findings in the literature, the

variance from the normal component has the largest share followed by the variance due

to bad jumps, and the variance attributable to good jumps occupies the smallest share.

This implies that the variance from bad jumps almost completely dominates the variance

stemming from the jump component.

A deeper analysis of Model 4 yields additional findings. First, when assessing the risk

premium’s directional estimates, denoted λ, we find that λz > 0, λg < 0, and λb > 0,

consistent with our initial hypotheses. For the good jump innovation, investors are clearly

willing to incur a marginal risk premium to benefit from possible good jumps, albeit to a
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moderate degree. Furthermore, observing the asymmetry parameter c in the model, we

find a positive c in good jump intensity, hg,t, and a negative c in the variance of normal

innovation, hz,t, and in bad jump intensity, hb,t. According to previous studies, c < 0

suggests a negative correlation between asset returns and the variance of the risk factor.

Hence, a negative c was observed in hz,t and hb,t. However, with positive asset returns,

the likelihood of a good jump occurrence increases. Thus, asset returns are positively

correlated with good jump intensity, leading to the positive estimate for c.

Furthermore, the parameters d and e represent the clustering effects of the subse-

quent variance process attributed to good and bad jump innovations, respectively. Good

jumps affect good jump intensity more than do the variance of normal innovation or bad

jump intensity. That is, a good jump event augments the likelihood of subsequent good

jumps. Analogously, bad jumps have a greater impact on bad jump intensity than the

do the variance of normal innovation or good jump intensity. This pattern indicates that

following a bad jump event, the probability of encountering another in the subsequent

timeframe increases. Thus, an evaluation of the magnitude of the good jump (1/µg) and

the bad jump (1/µb) reveals that good jumps are more intense than bad ones. This ob-

servation is consistent with economic logic; downturns in asset returns are typically more

severe than upswings. Because Model 4 has the best performance, we concentrate on the

parameter set of Model 4 in the subsequent sections of this paper.
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Table 2: Model parameter estimation by joint MLE
Note: Note: We employ the joint MLE using daily returns on the S&P 500, along with out-of-the-money options available on Wednesdays, to estimate four
distinct models. Specifically, Model 1 (GARCH w/ no jump) models a variance process without including any jump innovations. Model 2 (GARCH w/ good
jump) models a variance process with only good jump innovations. Model 3 (GARCH w/ bad jump) models a variance process with only bad jump innovations.
Finally, Model 4 (GARCH w/ good and bad jump) models a variance process with both good and bad jump innovations. Our data was for the 1996 to 2020
period. Parameter estimation is conducted utilizing the fmincon function in MATLAB, with robust standard errors calculated from the outer product of the
gradient evaluated at the optimal parameter estimates, following the methodology outlined by Newey and McFadden (1994). Columns labeled “Normal” depict
parameter estimates for the normal component. Those labeled “Good Jump” present estimates associated with good jump innovations, whereas those labelled
Bad Jump” display estimates for bad jump innovations. The “Weighted likelihood” presents the values of the weighted joint log-likelihood. “RMSE” denotes
the root mean square error values. ”Average Volatility” denote the mean of daily return volatilities expressed in annualized terms. Both ”Average Skewness”
and ”Average Kurtosis” refer to the mean daily skewness and kurtosis, respectively. ”Percent of variance (%)” denotes the proportion of variance attributable to
each risk factor relative to the total variance.

Model 1 (GARCH w/ no jump) Model 2 (GARCH w/ good jump) Model 3 (GARCH w/ bad jump) Model 4 (GARCH w/ good and bad jump)

Normal Good Jump Bad Jump Normal Good Jump Bad Jump Normal Good Jump Bad Jump Normal Good Jump Bad Jump

λ 2.85E+00 -5.48E-06 4.20E-03 3.22E+00 -5.49E-06 5.30E-03 3.49E+00 -4.16E-06 4.00E-03 2.18E+00 -5.45E-06 4.10E-03
(2.00E-22) (3.50E-23) (2.71E-22) (1.31E-05) (2.37E-05) (3.60E-06) (2.22E-03) (1.17E-04) (2.10E-03) (3.22E-07) (8.41E-09) (8.23E-09)

w 2.64E-06 7.67E-04 -2.80E-03 2.33E-06 1.40E-03 -3.70E-03 2.70E-06 -1.97E-04 -3.20E-03 2.17E-06 -1.60E-03 -3.20E-03
(1.33E-13) (5.21E-22) (2.80E-22) (2.34E-05) (6.49E-10) (9.60E-06) (3.09E-04) (9.57E-04) (7.67E-04) (3.06E-09) (5.23E-08) (2.44E-08)

b 8.79E-01 8.54E-01 9.06E-01 8.80E-01 8.70E-01 9.35E-01 8.86E-01 9.34E-01 9.89E-01 8.73E-01 8.52E-01 9.84E-01
(3.24E-20) (4.00E-23) (1.91E-21) (7.37E-04) (2.87E-08) (3.97E-05) (4.68E-03) (6.64E-03) (1.81E-03) (5.27E-08) (1.40E-08) (1.94E-07)

a 1.79E-06 1.33E-03 2.49E-03 1.73E-06 1.00E-03 2.50E-03 1.72E-06 1.50E-03 2.10E-03 2.07E-06 2.30E-03 2.60E-03
(8.10E-12) (1.20E-22) (8.01E-23) (1.50E-04) (1.32E-04) (1.70E-04) (1.51E-03) (6.15E-03) (2.83E-03) (1.38E-08) (4.51E-08) (8.84E-09)

c 1.13E+02 -1.04E+02 1.20E+02 1.16E+02 -9.56E+01 1.21E+02 1.05E+02 -1.19E+02 1.18E+02 1.17E+02 -1.04E+02 9.04E+01
(1.27E-20) (4.84E-22) (9.61E-22) (3.25E-05) (2.12E-04) (1.37E-04) (1.55E-03) (4.64E-03) (1.76E-03) (7.84E-09) (1.18E-08) (1.47E-07)

d 3.86E-06 6.70E-03 2.86E-06 3.95E-06 7.10E-03 1.97E-06
(5.92E-12) (2.12E-11) (4.35E-12) (2.61E-08) (6.84E-08) (7.71E-09)

e 8.18E-06 2.90E-05 3.80E-03 8.02E-06 2.56E-05 5.40E-03
(6.66E-04) (6.06E-04) (1.72E-03) (8.80E-09) (3.03E-09) (2.49E-08)

ϕ 9.57E-01 9.57E-01 9.59E-01 9.55E-01
(1.02E-22) (3.63E-11) (4.97E-03) (1.54E-15)

µg 6.89E+01 8.29E+01 7.83E+01 4.77E+01
(2.24E-21) (1.95E-04) (2.95E-03) (4.58E-08)

µb 4.14E+01 2.82E+01 4.65E+01 3.91E+01
(4.64E-21) (1.93E-06) (1.74E-03) (5.83E-09)

Properties
Weighted lilikehood 263202 269090 270004 272563
From returns 200020 200878 198965 201260
From options 63182 68212 71039 71303
RMSE 21.4514 19.9152 17.6958 16.7870
Average Volatility 0.1139 0.1227 0.1268 0.1269
Average Skewness -0.0566 -1.0215 -0.1384 -0.6107
Average Kurtosis 20.9280 35.0281 16.0866 24.7356
Percent of variance (%) 71.26 11.37 17.37 57.76 8.74 33.50 60.06 10.44 29.50 54.31 6.77 38.92
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In Figure 2, we present daily time series data on S&P500 returns, normal innovations,

good jump innovations, and bad jump innovations. Notable financial episodes, including

the 1998 European Debt Crisis, the 2000-2002 Dot-com Bubble, the 2007-2008 Financial

Crisis, the 2010-2011 European Debt Crisis, and the 2018-2019 US-China Trade War, are

clearly discernible in the estimated good and bad jump components of our model.

Figure 2: Daily returns, estimated daily normal component, good jump inno-
vation, and bad jump innovation on the S&P500 index
Note: In addition to daily returns on the S&P 500 index, based on Model 4’s estimates, we plot the
estimated daily normal component, the estimated daily good jump innovation, and the estimated daily
bad jump innovation.

Figure 3 showcases the monthly time series for the realized variance of the normal

component, good jump intensity, and bad jump intensity. We determine the monthly

values by aggregating the daily data within each month. During critical financial events,

we observe pronounced fluctuations in the variances of these three risk dimensions.
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Figure 3: Monthly time series for the realized variance of normal component,
good jump intensity, and bad jump intensity
Note: Based on the results of Model 4’s estimation, we plot the monthly realized variance of the normal
component, good jump intensity, and bad jump intensity. The monthly realized variance is defined as
the cumulative sum of daily realized variances for that month.

On the basis of Model 4’s estimates, we can now identify several variables of interest.

Table 3 provides a monthly statistical summary of various VRPs. Notably, the VRP is

the sum of the CVRP and JVRP; the JVRP can be further divided into the GJVRP and

BJVRP. In our measure transformation, the variance under the Q-measure consistently

exceeds that of the P-measure, leading all of our risk variance premiums to be negative.

In particular, an examination of CVRP, GJVRP, and BJVRP reveals that the absolute

value of BJVRP is greater than the other two VRPs, indicating that when negative news

causes asset prices to decline, investors are more fearful of future uncertainties.

Figure 4 depicts the monthly time series for the CVRP, the GJVRP, and the BJVRP.

Similar to the aforementioned findings, during significant financial events, all three VRPs

have a pronounced downturn. As observed in Figure 3, the BJVRP has the steepest drop,

whereas the decrease in the GJVRP is the smallest. This trend is consistent with investor

fears leading to a significantly larger increase in the bad jump intensity, as captured in

the options’ implied volatility, than the good jump intensity.
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Table 3: Summary statistics for monthly VRPs
Note: We present monthly summary statistics of the VRP, JVRP, CVRP, GJVRP, and BJVRP. The
monthly VRP is the sum of the daily VRPs for that month. The upper part of the table presents the
descriptive statistics for each type of VRP. The lower part of the table displays the correlation coefficients
between these VRPs.

Min Max Mean SD AR(1)
VRP -2.10E-03 -1.94E-05 -1.71E-04 3.23E-04 0.88
JVRP -2.00E-03 -7.64E-08 -1.37E-04 3.14E-04 0.88
CJVRP -8.86E-05 -1.93E-05 -3.40E-05 1.11E-05 0.67
GJVRP -2.98E-07 -1.16E-09 -3.43E-08 3.80E-08 0.55
BJVRP -2.00E-03 -7.47E-08 -1.37E-04 3.14E-04 0.88

VRP JVRP CVRP GJVRP BJVRP
VRP 1 0.9998 0.8050 0.6937 0.9998
JVRP 0.9998 1 0.7923 0.6841 0.9999
CVRP 0.8050 0.7923 1 0.8297 0.7923
GJVRP 0.6937 0.6841 0.8297 1 0.6840
BJVRP 0.9998 0.9999 0.7923 0.6840 1

Figure 4: Monthly time series for CVRP, GJVRP, and BJVRP
Note: Based on Model 4’s estimates, we plot the monthly CVRP, GJVRP, and BJVRP. The monthly
VRP is defined as the sum of all daily VRPs for that month.
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4 Empirical results

In this section, we further examine whether various VRPs serve as priced risk factors and

whether they can predict future asset returns. We first conduct cross-sectional regressions

to verify whether the various variance risks act as priced factors. Specifically, the cross-

sectional regression model is as follows:

rt = βγ + βft + ut, (35)

where rt represents the equities portfolio’s excess return on month t2, ft denotes factors

including VRPs and Fama-French three factors, γ is the vector of risk premium for ft,

and ut represents idiosyncratic errors.

In the cross-sectional regression, we primarily adopt two prevalent methods to esti-

mate the risk premium (γ). First, we integrate each VRP with the capital asset pricing

model (CAPM) factor and the Fama–French three-factor model (FF3), using the Fama–

MacBeth regression to estimate the risk premium for each VRP. The second method of

estimating the risk premium for each VRP is based on the three-pass regression approach

introduced by Giglio and Xiu (2021). The virtue of the three-pass regression is that it

possesses theoretical support suggesting that its estimated risk premiums exhibit robust

statistical properties, even if important explanatory variables are omitted.

Table 4 presents the results of risk premium estimations using both the Fama-MacBeth

regression and the three-pass regression methods. We note that regardless of the estima-

tion approach, the risk premium for VRP is statistically significant. Further dissecting

VRP into its components, CVRP and JVRP, both factors exhibit significant risk pre-

miums as well. However, the risk premium of JVRP is more aligned with that of VRP.

Delving deeper into the constituents of JVRP, namely GJVRP and BJVRP, both fac-

tors are statistically significant at comparable levels, with BJVRP’s risk premium closely

mirroring that of JVRP. As a result, we deduce that the pricing capability of VRP is

predominantly influenced by BJVRP. Furthermore, when observing the three underlying

variance risk premiums, CVRP, GJVRP, and BJVRP, the risk premium associated with

BJVRP is the most pronounced. It means that BJVRP captures investors’ anticipatory

negative views on the market. This negative sentiment leads BJVRP to bring about

a higher expected stock return, which is also reflected in the expected returns of both

JVRP and VRP.

2Following the approach of Giglio and Xiu (2021), we use 202 U.S. equities portfolios, which include
17 industry portfolios, 25 portfolios sorted by size and book-to-market ratio, 25 portfolios sorted by size
and variance, 35 portfolios sorted by size and net issuance, 25 portfolios sorted by operating profitability
and investment, 25 portfolios sorted by size and accruals, 25 portfolios sorted by size and momentum,
and 25 portfolios sorted by size and beta. The data is sourced from French’s website and span the period
from 1996 to 2020.
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Table 4: Each VRP and the cross–section of equity portfolios
Note: We document the cross-sectional relationship between the VRP, JVRP, CVRP, GJVRP, and
BJVRP with equity portfolios. The risk premiums for these VRPs are estimated using three distinct
methodologies: the Fama-MacBeth regression within the CAPM framework, the Fama-French three-
factor model (FF3), and the three-pass regression approach as proposed by Giglio and Xiu (2021).
To account for serial correlation, robust standard errors are computed in accordance with Newey and
West (1994), applying optimal lag selection. In the results, ’Coef’ signifies the estimated risk premium
coefficient, and ’t’ represents the t-statistic for this estimate.

with CAPM with FF3 Three-pass regresion

Coef t Coef t Coef t

VRP 1.76E-04 3.45 1.62E-04 3.38 3.00E-05 5.75
JVRP 1.71E-04 3.45 1.57E-04 3.37 2.87E-05 5.60
CVRP 6.81E-06 3.34 6.35E-06 3.39 1.30E-06 6.26
GJVRP 1.72E-08 2.61 1.89E-08 3.12 2.56E-09 4.36
BJVRP 1.71E-04 3.45 1.57E-04 3.37 2.87E-05 5.60

In the subsequent phase, we examine whether each variance risk premium possesses

return predictability. We conduct the following regression:

1

h

h∑
j=1

rt+j = αh + βhXt + ut+h, (36)

where h is the regression horizon, rt denotes a log excess return of S&P500 index on

month t, Xt contains the predictor variables including VRP, JVRP, CVRP, GJVRP and

BJVRP. From Table 3, we observe a high degree of correlation among the VRPs, thus

we employ OLS to estimate future returns based solely on each individual VRP.

Drawing from previous literature on the predictive power of VRPs, they have high

predictive ability for time horizons longer than 6 months. To obtain more robust results,

we set the regression horizon h to 1, 3, 6, 12, 18, or 24 months. The Newey—West

standard errors were used to determine the optimal lag length. Table 5 documents the

predictability regression results ranging from 3 to 24 months. Given the substantial

numerical differences among the variables, we standardize each variable to facilitate the

interpretation of subsequent empirical results.

Table 5 showcases the predictability of returns for each factor. Due to high correlations

among our factors, our regression results focus on univariate predictability regressions for

each factor. Consistent with existing literature, the coefficient for VRP is statistically

significant when predicting returns over periods exceeding six months. Moreover, as

the prediction horizon lengthens, the level of significance escalates. When we further

scrutinize JVRP and CVRP, we find that the significance level for JVRP almost mirrors

that of VRP, whereas CVRP remains insignificant regardless of the prediction horizon.

Subsequently, when examining GJVRP and BJVRP, our findings align BJVRP closely

22



Table 5: Return predictability of each VRP
Note: We report the ordinary least squares predictive regression estimates of index return on each
VRP. The dependent variables are 1-, 3-, 6-, 12-, 18-, 24-month S&P500 index returns. We standardize
each VRP. To account for serial correlation, robust standard errors are computed in accordance with
Newey and West (1994), applying optimal lag selection. In the results, ’Coef’ signifies the estimated
risk premium coefficient, and ’t’ represents the t-statistic for this estimate, and ’R2’ is the coefficient of
determination.

1 3 6

Coef t R2(%) Coef t R2(%) Coef t R2(%)

VRP -0.0718 -0.67 0.52 -0.1459 -1.17 2.15 -0.2266 -3.03 5.22
JVRP -0.0732 -0.68 0.54 -0.1491 -1.21 2.24 -0.2317 -3.17 5.45
CVRP -0.0162 -0.15 0.03 -0.0267 -0.19 0.07 -0.0368 -0.32 0.14
GJVRP 0.0027 0.02 0.00 0.0132 0.09 0.02 -0.0144 -0.14 0.02
BJVRP -0.0732 -0.68 0.54 -0.1491 -1.21 2.24 -0.2317 -3.17 5.46

12 18 24

Coef t R2(%) Coef t R2(%) Coef t R2(%)

VRP -0.2356 -3.39 4.40 -0.2021 -3.17 3.30 -0.2686 -4.03 5.92
JVRP -0.2439 -3.70 4.70 -0.2092 -3.39 3.52 -0.2749 -4.27 6.19
CVRP 0.0196 0.16 0.03 0.0162 0.14 0.02 -0.0542 -0.46 0.27
GJVRP 0.0093 0.09 0.00 -0.0119 -0.12 0.01 -0.0528 -0.52 0.23
BJVRP -0.2439 -3.70 4.70 -0.2092 -3.39 3.52 -0.2749 -4.27 6.19

with JVRP, while GJVRP remains statistically insignificant. This suggests that the

return predictability of VRP primarily emanates from the jump component rather than

the continuous component. Furthermore, it is the bad jump component that dominates

the results.

The results for R2 reveal a peak value at 6% for BJVRP when predicting returns over

the subsequent 24 months. Across varying periods, BJVRP’s R2 considerably outpaces

those of CVRP and GJVRP. Ultimately, we discern that when predicting returns beyond

a six-month horizon, an increase in one standard deviation in BJVRP leads to a decrease

in future returns by approximately 25% of a standard deviation.

5 Conclusion

In this paper, we investigate the roles of good jump variance risk and bad jump variance

risk in option pricing. Extending the model proposed by Yang (2018), we bifurcate the

asymmetric double exponential jump distribution model into one that simultaneously

captures both good and bad jumps. Subsequently, we derive the closed-form solutions for

option pricing corresponding to this model. With regard to estimation, we investigate the

model performance implications of integrating different types of jumps into the variance
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process. Our findings reveal that the model with both good and bad jumps outperforms

the others. Furthermore, the model incorporating solely the bad jump component fares

better than its counterpart that only includes the good jump component. Empirically,

cross-sectional regression estimates indicate that CVRP, GJVRP, or BJVRP are all price

risk factors. However, BJVRP aligns more closely with JVRP and VRP and, compared

with CVRP and GJVRP, offers a higher risk premium. Beyond this, in our time-series

analysis, BJVRP dominates the results for VRP. When predicting returns for periods

extending beyond six months, we observe significant predictive performance. A one-

standard-deviation increase in BJVRP correlates with a subsequent decline in future

returns by approximately 25% of a standard deviation.

Acknowledgement

We gratefully acknowledge research support from the Ministry of Science and Technology

(111-2410-H-031-074-MY2), and the National Science and Technology Council (112-2424-

H-004-001-DR).

Declaration of interest

No potential conflict of interest was reported by the authors.

Declaration of generative AI in scientific writing

During the preparation of this work we used ChatGPT4 in order to proofread this pa-

per. After using this tool, we reviewed and edited the content as needed and take full

responsibility for the content of the publication.

24



References

Bakshi, G., and Kapadia, N. (2003). Delta-hedged gains and the negative market volatility

risk premium. The Review of Financial Studies, 16 (2), 527-566.

Bates, D. S. (1991). The crash of ’87: was it expected? The evidence from options

markets. The Journal of Finance, 46 (3), 1009-1044.
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Appendix A

Proof of Lemma 1. Recall that zt, yg,t and yb,t are conditionally indepedent, we have

EP
t−1

[
exp

(
−ΛZzt + ΛV Z(z

2
t /hz,t)− ΛGyg,t − ΛByb,t

)]
= EP

t−1

[
exp

(
−ΛZzt + ΛV Z(z

2
t /hz,t)

)]
EP

t−1 [exp (−ΛGyg,t)]E
P
t−1 [exp (−ΛByb,t)] .

Also, we have the following properties for the normal variable and the compound Poisson

variable

EP
t−1

[
exp

(
−ΛZzt + ΛV Z(z

2
t /hz,t)

)]
= exp

(
− log(1− 2ΛV Z)

2
+

Λ2
Z

2(1− 2ΛV Z)
hz,t

)
,

EP
t−1 [exp (−ΛGyg,t)] = exp

((
µg

µg + ΛG

− 1

)
hg,t

)
,

EP
t−1 [exp (−ΛByb,t)] = exp

((
µb

µb + ΛB

− 1

)
hb,t

)
.

Using the above formulations, we can accomplish the lemma as follows

EP
t−1

[
exp

(
−ΛZzt + ΛV Z(z

2
t /hz,t)− ΛGyg,t − ΛByb,t

)]
= exp

(
− log(1− 2ΛV Z)

2
+

Λ2
Z

2(1− 2ΛV Z)
hz,t +

(
µg

µg + ΛG

− 1

)
hg,t +

(
µb

µb + ΛB

− 1

)
hb,t

)
.
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Appendix B

Proof of Proposition 1. If an equivalent martingale measure exists, the expected

return of asset on time from t− 1 to t under measure Q is the risk-free rate

EQ
t−1

[
St

St−1

]
= ert .

Using theQ-to-Pmeasure transformation and incorporating the Radon—Nikodým deriva-

tive in Equation (10) along with Lemma 1 and the asset dynamics process in Equation

(1) into the above equation, we have

EQ
t−1

[
St

St−1

]
= EP

t−1

[(
dQt/dPt

dQt−1/dPt−1

)
St

St−1

exp(−rt)
]
= 1.

Therefore,

EQ
t−1

[
St

St−1

]
= EP

t−1
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dQt/dPt

dQt−1/dPt−1

)
St

St−1

exp(−rt)
]
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{
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z2t
hz,t
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+(λb − ξb(−1))hb,t + zt + yg,t − yb,t +
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2
− Λ2
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}]
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Thus, the discounted stock is a martingale under the probability measure Q if and only

if(
λz −

1

2
+

1− 2ΛZ

2(1− 2ΛZ)

)
hz,t +

(
λg −

(
µg

µg − 1
− 1
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)
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Appendix C

Proof of Proposition 2. To derive the asset return process under the Q-measure, we

first consider the moment generation function of zt + yg,t − yb,t under the Q-measure as

follows

EQ
t−1 [exp {k(zt + yg,t − yb,t)}] = EP

t−1
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dQt/dPt

dQt−1/dPt−1

)
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where ϕ = 1 − 2ΛV Z , µ
∗
g = µg + ΛG, Πg = µg/µ

∗
g, µ

∗
b = µb + ΛB, Πb = µb/µ

∗
b . Thus,

we observe that under Q-measure, zt ∼ N(−ΛZh
∗
z,t, h

∗
z,t), yg,t ∼ CPJ(h∗g,t, µ

∗
g) and yb,t ∼

CPJ(h∗b,t, µ
∗
b) where h∗z,t =
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ϕ
, h∗g,t = Πghg,t and h∗b,t = Πbhb,t. Now, we suppose that

z∗t = zt + ΛZh
∗
z,t ∼ N(0, h∗z,t), y

∗
g,t ≡ yg,t and y∗b,t ≡ yb,t. According to the result of

Proposition 1, we can derive the return dynamic under Q-measure as follows
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The variance dynamic under Q-measure can be written as

hz,t = wz + bzhz,t−1 +
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hz,t−1
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∗
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∗
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Additionally, the dynamic of good jump intensity under Q-measure can be written as
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where w∗
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∗
g = agΠg/ϕ, c

∗
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∗
g = dgΠg, e

∗
g = egΠg.

Finally, the dynamic of bad jump intensity under Q-measure can be written as

hb,t = wb + bbhb,t−1 +
ab

hz,t−1

(zt−1 − cbhz,t−1)
2 + dbyg,t−1 + ebyb,t−1

h∗b,t = wbΠb + bbh
∗
b,t−1 +

abΠb

hz,t−1ϕ

(
z∗t−1 − ΛZh

∗
z,t−1 − cbh∗z,t−1ϕ

)2
+ dbΠby

∗
g,t−1 + ebΠby

∗
b,t−1

h∗b,t = w∗
b + bbh

∗
b,t−1 +

a∗b
h∗z,t−1

(
z∗t−1 − c∗bh∗z,t−1

)2
+ d∗by

∗
g,t−1 + e∗by

∗
b,t−1,

where w∗
b = wbΠb, a

∗
b = abΠb/ϕ, c

∗
b = cbϕ+ ΛZ , d

∗
b = dbΠb, e

∗
b = ebΠb.

32



Appendix D

Proof of Proposition 3. We first assume the moment generating function of the

multi-period asset return as follows

fQ(ϕ; t, T ) ≡ EQ
t

[
exp

(
ψ

T−t∑
j=1

Rt+j

)]

= exp
(
A(ψ; t, T ) +B(ψ; t, T )h∗z,t+1 + C(ψ; t, T )h∗g,t+1 +D(ψ; t, T )h∗b,t+1

)
,

where A(ψ; t, T ), B(ψ; t, T ), C(ψ; t, T ) and D(ψ; t, T ) are the scalar coefficients. Then,

we have

fQ(ϕ; t+ 1, T ) = EQ
t+1

[
exp

(
ψ

T−t∑
j=2

Rt+j

)]

= exp
(
A(ψ; t+ 1, T ) +B(ψ; t+ 1, T )h∗z,t+2 + C(ψ; t+ 1, T )h∗g,t+2

+D(ψ; t+ 1, T )h∗b,t+2

)
.

According to the property of iterated expectation, we have

fQ(ϕ; t, T ) = EQ
t

[
exp

(
ψ

T−t∑
j=1

Rt+j

)]
= EQ

t

[
EQ

t+1

[
exp

(
ψ

T−t∑
j=1

Rt+j

)]]

= EQ
t

[
exp (ψRt+1)E

Q
t+1

[
exp

(
ψ

T−t∑
j=2

Rt+j

)]]

= EQ
t

[
exp

(
ψRt+1 + A(ψ; t+ 1, T ) +B(ψ; t+ 1, T )h∗z,t+2 + C(ψ; t+ 1, T )h∗g,t+2

+D(ψ; t+ 1, T )h∗b,t+2

)]
.
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We then substitute the Rt+1 and variance process under Q-measure from Equation (15)

to (18)

fQ(ϕ; t, T ) = exp

(
ψrt+1 −

ψ

2
h∗z,t+1 − ψξ∗g(1)h∗g,t+1 − ψξ∗b (−1)h∗b,t+1 + A(ψ; t+ 1, T )

+B(ψ; t+ 1, T )(w∗
z + bzh

∗
z,t+1) + C(ψ; t+ 1, T )(w∗

g + bgh
∗
g,t+1) +D(ψ; t+ 1, T )(w∗

b + bbh
∗
b,t+1)

)
× EQ

t

[
exp

{(
ψ − 2a∗zc

∗
zB(ψ; t+ 1, T )− 2a∗gc

∗
gC(ψ; t+ 1, T )− 2a∗bc

∗
bD(ψ; t+ 1, T )

)
z∗t+1

+

(
a∗zB(ψ; t+ 1, T )

h∗z,t+1

+
a∗gC(ψ; t+ 1, T )

h∗g,t+1

+
a∗bD(ψ; t+ 1, T )

h∗b,t+1

)
z∗2t+1 + a∗zc

∗2
z B(ψ; t+ 1, T )h∗z,t+1

+a∗gc
∗2
g C(ψ; t+ 1, T )h∗g,t+1 + a∗bc

∗2
b D(ψ; t+ 1, T )h∗b,t+1

}]
× EQ

t

[
exp

{(
ψ + d∗zB(ψ; t+ 1, T ) + d∗gC(ψ; t+ 1, T ) + d∗bD(ψ; t+ 1, T )

)
y∗g,t+1

}]
× EQ

t

[
exp

{(
−ψ + e∗zB(ψ; t+ 1, T ) + e∗gC(ψ; t+ 1, T ) + e∗bD(ψ; t+ 1, T )

)
y∗b,t+1

}]
.

Recall that we have the following results

EP
t−1

[
exp

(
−ΛZzt + ΛV Z(z

2
t /hz,t)

)]
= exp

(
− log(1− 2ΛV Z)

2
+

Λ2
Z

2(1− 2ΛV Z)
hz,t

)
,

EP
t−1 [exp (−ΛGyg,t)] = exp

((
µg

µg + ΛG

− 1

)
hg,t

)
,

EP
t−1 [exp (−ΛByb,t)] = exp

((
µb

µb + ΛB

− 1

)
hb,t

)
.

Thus, we can solve the analytical solutions for the scalar coefficients A(ψ; t, T ), B(ψ; t, T ),

C(ψ; t, T ) and D(ψ; t, T ):

A(ψ; t, T ) = ψrt+1 + A(ψ; t+ 1, T ) +B(ψ; t+ 1, T )w∗
z + C(ψ; t+ 1, T )w∗

g +D(ψ; t+ 1, T )w∗
b

− 1

2
log
(
1− 2B(ψ; t+ 1, T )a∗z − 2C(ψ; t+ 1, T )a∗g − 2D(ψ; t+ 1, T )a∗b

)
,

B(ψ; t, T ) = −ψ
2
+B(ψ; t+ 1, T )(bz + a∗zc

∗2
z ) + C(ψ; t+ 1, T )a∗gc

∗2
g ++D(ψ; t+ 1, T )a∗bc

∗2
b

+
(ψ − 2B(ψ; t+ 1, T )a∗zc

∗
z − 2C(ψ; t+ 1, T )a∗gc

∗
g − 2D(ψ; t+ 1, T )a∗bc

∗
b)

2

2(1− 2B(ψ; t+ 1, T )a∗z − 2C(ψ; t+ 1, T )a∗g − 2D(ψ; t+ 1, T )a∗b)
,

C(ψ; t, T ) = C(ψ; t+ 1, T )bg − ψξ∗g(1) + ξ∗g(ψ +B(ψ; t+ 1, T )d∗z + C(ψ; t+ 1, T )d∗g

+D(ψ; t+ 1, T )d∗b),
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D(ψ; t, T ) = D(ψ; t+ 1, T )bb − ψξ∗b (−1) + ξ∗b (−ψ +B(ψ; t+ 1, T )e∗z + C(ψ; t+ 1, T )e∗g

+D(ψ; t+ 1, T )e∗b),

with terminal conditions A(ψ;T, T ) = B(ψ;T, T ) = C(ψ;T, T ) = D(ψ;T, T ) = 0.
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Appendix E

Our particle filtering approach is inspired by Bégin, Dorion, and Gauthier (2020). They

introduce a novel particle filtering algorithm drawing upon the sequential importance

resampling method, which accounts for the uncertainties in both the conditional variance

of the stochastic continuous term and the variance of the jump frequency. This algorithm

can estimate the filtered mean of zt, yg,t, yb,t, hz,t, hg,t, and hb,t simultaneously.

Assume that at time t − 1, N good jump particles and bad jump particles are rep-

resented as y
(i)
g,1:t−1 = {y(i)g,1, y

(i)
g,2, ..., y

(i)
g,t−1}, y

(i)
b,1:t−1 = {y(i)b,1, y

(i)
b,2, ..., y

(i)
b,t−1}, i ∈ {1, ..., N},

respectively3. Given R1:t−1, hz,1, hg,1, and hb,1, we can derive h
(i)
z,t, h

(i)
g,t, and h

(i)
b,t through

the subsequent steps:

1. For each i ∈ 1, ..., N , y
(i)
g,t will be drawn from a compound Poisson distribution

assumed by the particle:

f
(
·|y(i)g,1:t−1, y

(i)
b,1:t−1, R1:t−1

)
= fGJ

(
·|µg, h

(i)
g,t

)
,

and y
(i)
b,t will be drawn from a compound Poisson distribution assumed by the par-

ticle:

g
(
·|y(i)g,1:t−1, y

(i)
b,1:t−1, R1:t−1

)
= gBJ

(
·|µb, h

(i)
b,t

)
.

2. For each i ∈ 1, ..., N , the importance weight is updated to reflect the likelihood of

the simulated good jump and bad jump particle producing the return Rt at time t:

w̄
(i)
t = f

(
Rt|R1:t−1, y

(i)
g,1:t, y

(i)
b,1:t

)
=

1√
2πh

(i)
z,t

exp

−1

2

(
Rt −m(i)

t

)2
h
(i)
z,t

 ,

where m
(i)
t = rt+(λz − ξz(1))h(i)z,t+(λg − ξg(1))h(i)g,t+(λb − ξb(−1))h(i)b,t + y

(i)
g,t− y

(i)
b,t .

3. For each i ∈ 1, ..., N , compute the normalized importance weight as follows:

w
(i)
t =

w̄
(i)
t∑N

k=1 w̄
(k)
t

.

4. For each i ∈ 1, ..., N , the conditional variance process is updated as follows:

h
(i)
z,t+1 = wz + bzh

(i)
z,t +

az

h
(i)
z,t

(
z
(i)
t − czh

(i)
z,t

)2
+ dzy

(i)
g,t + ezy

(i)
b,t ,

3We set N = 5000.
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h
(i)
g,t+1 = wg + bgh

(i)
g,t +

ag

h
(i)
z,t

(
z
(i)
t − cgh

(i)
z,t

)2
+ dgy

(i)
g,t + egy

(i)
b,t ,

h
(i)
b,t+1 = wb + bbh

(i)
b,t +

ab

h
(i)
z,t

(
z
(i)
t − cbh

(i)
z,t

)2
+ d

(i)
b yg,t + e

(i)
b yb,t,

where z
(i)
t = Rt −m(i)

t .

5. The filtered variable is calculated using the normalized importance weights obtained

from the third step as follows:



z̃t =
N∑
i=1

z
(i)
t w

(i)
t

ỹg,t =
N∑
i=1

y
(i)
g,tw

(i)
t

ỹb,t =
N∑
i=1

y
(i)
b,tw

(i)
t

h̃z,t+1 =
N∑
i=1

h
(i)
z,tw

(i)
t

h̃g,t+1 =
N∑
i=1

h
(i)
g,tw

(i)
t

h̃b,t+1 =
N∑
i=1

h
(i)
b,tw

(i)
t

.

6. We draw N particles from a set of particle clusters in the smoothed empirical

cumulative density function presented in Malik and Pitt (2011) and assume that{
h
(ji)
z,t+1

}
,
{
h
(ji)
g,t+1

}
, and

{
h
(ji)
b,t+1

}
are the conditional variances after resampling.

The values obtained after resampling are used to replace the original conditional

variances: 
h
(i)
z,t+1 ← h

(ji)
z,t+1

h
(i)
g,t+1 ← h

(ji)
g,t+1

h
(i)
b,t+1 ← h

(ji)
b,t+1

.

Finally, Lreturn can be obtained from the particle filtering algorithm:

Lreturn(Θ) =
T∑
t=1

log

(
N∑
i=1

w̄
(i)
t

)
.
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